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DIFFERENTIAL EQUATIONS OF MOTION FOR COMBINED FLAPWISE BENDING, CHORDWISE
BENDING, AND TORSION OF TWISTED NONUNIFORM ROTOR BLADES 1

By Jomi C. HOUBOLTand GIJOP.QIIW. BROOKS

SUMMARY

The di$eretiial eguatwns of motion for the lateral and tor-
sional deformations of tunited rotating beams are developedfor
applicdon to hehopi%r rotor and propelkr ldu.&8. No
aswkmptioni8 made regarding the coincidence of the neutral,
efustia,and muss axes, and the generality h w.ch that preobu-s
theories involving various 8impl@c&wn8 are contained w
subcu.sesto the theory presentedin thti papw.

Special attentionb given the terms whtih are not included in
prePiow3thori.a. The6eterme are largely cmqvling-typeterm8
associated &h the centrifugalforctx+. Meth.di of sok?km of
the egumh%nsof rnottin are indti by 8ekcf.ed ~mpk$.

INTRODUCTION

This paper deals with the deformation theory of rotating
blades. The structural problems of these blades have
become more acute in almost every phase of aeronautical-
engineering applimtion: For example, propellers have
become larger and thinner, particularly in connection with
uircraft designed for vertical take-off ~nd landing and short
take-off and landing, and as a consequence are more suscep-
tible to vibration and flutter troubles; helicopter blades are
subject to numerous vibration, divergence, and flutter
problems; and turbine and compressor blades fail frequently
because of some vibration phenomena. There is therefore
much intereatin the development of a more generil deforma-
tion theory which is fundamental in the structural and
dynamic analysis of these problems.

Although many theories on blade deformation exist, these
theories either neglect some of the factors of concern or treat
thorn only approximately. The factors are many and
include variable stiffness and mass distributions, noncoiu-
cidenco of the elastic and mass axes, built-in twist, coupling
brought about by inertia and centrifugal forces, and so forth.
In order to give a rough perspective of the secpe of available
theory, figure 1 has been prepared. The nonrotating-beam
cases have also been included in figure 1 (a). The fit two
eases refer to uncoupled bending and uncoupled torsion of
beams without twist, and much work on these CSEWhas
been done; their treatment is in fact Assical The third
case is that of coupled bending in two directions and torsion
of a twisted beam, wherein the elastic and mass axes are
noncoincident (see ref. 1); the subcase where no twist is

present hah also been given extensive tieatment. Additional
treatments on general theory of pretwisted beams are also
given in referencw 2 to 4.

The rotating-beam oases which have been treated with
the inclusion of centrifugal forces are shown in figure 1 (b).
The first case, that of pure flapwise bending of an untwisted
beam, has been considered by several investigators; reference
5 is a notable example in which beams of variable cross
section and diilerent,rooiwnd suspensions are analyzed from
a desigmapplication standpoint in considerable detail.
References 6 to 8 also give substantial treatments to this
case. Pure torsion of untwisted rotating beams is treated
in references 9 and 10, and combined bending in two direc-
tions iEtreated by various means which include both vector
and matrix methods in references 11 to 16.

The case treated in the present paper is shown in figure 2;
this we represents the coupled bending in two directions
and torsion of a twisted rotating beam where the elastic
axis, maw axis, and tensiop axis are not necessarily co-
incident. The tension axis is d&ed as the spanwise locus
of the centroids of the cross-sectional area effective in carry-
ing tension. The specific purpose of the paper is to develop
the differential equation of deformation of the blade under

(0)

(a) Nom-dating beams.
(b) Rotating beama. ~

FIQUIiE l. —CaEesheated h previous theory.
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FIQUED 2.—Present thecv. Case of coupled benclhg-kmion of
tw-i+d rotating b~

the action of various applied loads. The development is
made along the principles of “engineering” beam theory,
and secondwy effects, such as deformation due to shear, are
not included. The theory is therefore intended primarily
for blades of moderate to high aspect ratios, for which plate
bending effects are probably not significant. Special sub-
cases which involve simplifications that appear justiiied in,
the treatment of certain problems (for example, helicopter
blade deformation) are then deduced. Finally, methods of
solving the equations are discussed, and examples are given.
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SYMBOLS

cross-sectional &en of blade tiective in carry-
ing axial tension

section constants, see equations (9)
incremental distance measured along beam

fiber in undeformed state
incremental distance measured along beam

fiber in deformed state
Young’s modulus of elasti@-
distance between mass and elastic axis, positive

when m- axis lies ahead of elastic center
distance between area centroid of tensile

member and elastic axis, positive for centroid
forward

distance at root between elastic axis and axis
about which blade is rotating, positive when
elastic axis lies ahead

shear modulus of elasticity
bending moments of inertia about major and

minor neutral axe9, respectively (both pass
through cenhoid of croswectional area
e.ilective in carrying tensions)

torsional stii7nea9constant
polar radius of gyration of cross+ectional area

effective in carrying tensile stresses about
elnstic axis

polar radius of gyration of cross-sectionnl
mass about elastic axis (km2=km12+k~~

mass radii of gyration about major neutral
axis and about an axis perpendicular to
chord through the elnstic axis, respectively

intensity per unit length of laterally applied
aerodynamic load in plane of rotation

intensity per unit length of applied aero-
dynamic loading perpendicular to piano of
rotation

intensi~ per unit length of applied aero-
dynamic torque loading

resultant cross-sectional moment about major
principal axis

resultant cross-sectional moment about axis
perpendicular to major principal axis rmd
P* through elastic axis

remdtant moments in w, y-, and z-directions,
respectively, of Ml, M~, ancl Q nwments

mass of beam per unit length
resultant or total loadings per unit length in

x-, y-, and z-directions
resultant cross-sectional torque about elnatic

axis
torque loading per unit length
resultant torque loadings per unit length in x-,

y-, and z-directions
blade radius

tension in beam, Z’S
J

‘Q%nx &c
z

thickness of cross section at any chordwise
position

crowsectional sheam in y- and z-directions
lateral displacements of beam, in piano of rela-

tion and normal to plane, respectively
coordinate system which rotates with blaclc

such that z-axis falls along initial or unde-
formed position of. elastic axis (see figs, 2
and 3)

blade angle of s$ation z prior to any cleformn-
tion, positive when lending edge is upward

strain .
T

‘b- ‘Ue h ‘etion’ EA
crowsectional coordinates; 7w& lies along

major W@ {-axis is perpendicular to mnjor
axis and paases through elastic axis (SCO
@.3)

values of q for trailing edge and leading edgo of
cross section

mass density
stress
angle of twisting defoliation, positive when

leading edge is upward
angular velocity of rotation
ilequency of vibration, radians/see

Primes denote derivatives with respect to x; dots denol o
derivatives with respect to time.
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ANALYSIS

GENERALPROCEDURE

As noted from figure 2, the beam is considered as though
it were a rotating helicopter blade with rotation counter-
clockwise when viewed from above. The x-axis of the x, y, z
coordinate axessystem shownlies outward along the blade and
is coincident with the undeformed position of the elastic axis.
This set of axes moves with the blade around the axis of
rotation at the given rotatiomd velocity Q, and all deforma-
tions of the blade are referred to this coordinate system. The
blade is considered under the action of distributed aerody-
namic loadings in the y- and z-directions and nuder a dis-
tributed torque loading about the elastic axis, where the
intensities per unit length are denoted by LP, L., and M,
respectively. The tension in the beam is denoted by T.

Figures 3 (a) and (b) show the coordinate system used for
the blade cross section and the chosen displacements of this
analysis. The q- and ~-axes, with the origin ‘at the elastic
ask and the q-axis along the major axis of the cross section,
move with the cross section. The blade deformations are
denoted by a displacement u of the elastic axis in the plane of
rotation, positive when in the direction of rotation, a dis-
placement w out of the plane of rotation, positive upward,
and a rotation 4 about the elastic axis. The built-in twist IS’
and also # are positive when the blade leading edge is up.

The aim of this analysis is to derive the diilerential equa-
tion of motion in terrnq.of o, w, and O. The derivation
proceeds along the following steps:

(1) The equation for longitudinal strain at any po~t on the
cross section is derived in terms of the displacements.

(2) With the aid of this stiain equation the internal elastic
moments are derived; these are the resultant moments taken
about the ~ and t-axes and are shown in figure 3 (c).

(3) The transformation is then made of these elastic mo-
ments to the more easily handled moments which have
vectors parallel to the z, y, z axes system. (See@. 3 (c).)

(4) The equilibrium expressions for these latter moments
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(a) Coordinates.

QMy

Iux

(b) Displacements.
(c) Momonts.

FIGURE 3.—Nomenclature-

are.derived, and this consideration involves the-introduction
of the total loading on the’beam.

(5) The total loadings, composed of the body forces and
applied loadings, are derived.

(6) Steps 3,4, and 5 are combined to give the final differ-
ential equations.

. .
DERIVATIONOF STRAINEQUATION

Both longitudimd and shearing strains are, of cmrse, pro-
duced during bending and torsion of the beam. In general,
both types of strains must be considered in determining the
resultant forces and moments that act on a given cross
section. In the treatment given in the present paper, how-
ever, an approimh is used which requires that only the
longitudinal strains have to be considered explicitly. In
appendix A a derivation akin to an engineering beam theory
is given for the strain that develops in any longitudinal fiber
of a twisted beam which undergoes translational displace-
ments u and w and a torsional displacement & The deriva-
tion is mainly formal, but a physical insight of how strain is
developed may be gained by considetig the possible motions
of the imaginary cutting planes shown in figure 4 and which
are assumed to remain plane during deformation. In
general, strain may arise from four types of motion: pure
displacement of the planes toward or away from each other,
rotation of the planes associated with chordwise bending,
rotation of the planes associated with flapwise bending, and
rotation of the planes reJative to one another about the
elastic axis to eauze beam twisting. With the assumption
that the cross section is symmetz-icalabout the major princi-
pal axis, the resulting longitudinal strain is found to be

e=e~+ (e~~) (0” cos p+w’~ sin ~)+~ (v” sin &w’l cos I’3)+

(t’++ ~d’)d’+’ - (1)

The longitudinal stresses follow directly horn this equation
and are

U=E[6T+ (ed—~) (0” Cos /t?+ ’d’ & ff)+f(t)” Sh &

w“ Cos p)+ (r+7.F-kf)p’f#.’] (2)

●

_$%sinP) $&32+3)
FIGURE4.+%lllhW
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No further development of cross~ctional stresses or
strains is necessary. The consideration of shearing stre&s
which are associated with longitudinal stresses, that is, the
shearing stresses which are necessary to satisfy equilibrium
of an eJementaltube, is avoided by choosing the elastic axis
(defined here as the locus of shear centers) as a reference
asis; the consideration of ahearing stresses due to twisting
deformation is obviated through use of the assumption diat
the resisting torque includes a St. Venant type torsional
term which is the same as -would develop if the beam -were
initially untwisted. Both of these items will be introduced
in the next section.

DERIVATIONOl?INTERNALELASTICMOMENTS

The strws distributions over the cross section may now be
resolved into effective internal resisting moments at the
elastic-axis position, as shown in iigures 3 and 5. In order
to determine these moments, the inclination relative to the
elastic axis of the general beam fiber due to initial twist and
twisting deformation must be considered. The stress along
this fiber is resolved into two components, one parallel to
the elastic axis and one in a plane perpendicular to the
elastic axis. (See fig. 5.) From the longitudinal com-
ponent, the flapwise bending moment MI and the chordwise
bending moment Mz are given as follows: ,

SS
M2=– ‘“” :2 ox dc dq

1●

(3)

(4)

where the minus signs have been introduced to make the
moments positive when they produce compression in the
upper and nose fibem, respectively.

The component in the plane normal to the elastic axis
leads to an eflective torsional resisting moment. The con-
sideration of this component and the addition of the torque
associated with St. Venant twisting mentioned previously
lends to the following equation for total resisting torque:

where a positive torque is associated with a positive 4’.

(5)

In
equation (5), the choice of the elastic axis as a reference
axis is siagn.iiicant. The elastic axis does not necessmily
coincido with the centroidal axis, and if the centroidal asis,
or for that matter any other axis, were used as a reference,
then the shearing stresses associated with longitudinal
streeses would contribute to the total resist@ torque.

Q“
Fmmm 5.—Internal elastic moments.

Such a term would have to be included in equation (5) and
would thus lead to considerable complication in the analysis,
With the choice of the elastic axis, however, no such term
appears, because the elastic &s is defined herein as tho
axis about which the resultant torque of the sheming,stressea
due to longitudinal stressesis zero,

Since the elastic axis is important, the establishment of
this axisposition wiILbediscussednow. Consider differential
longitudinal str~es to arise which have o cross-sectional
distribution the same as that given by equation (2). Tho
differential longitudinal stresses associated with tho oxprcs- o
sion ~e+ed(o” cos ~+w” sk ~) ‘k.4z6’#] me tiform
across the cross section and hence do not produce my
shearing stresses. For the expression

m–7(~” ~s P+’w” Sk P)+ (P+#)P’4J’l

the cMerential stresses would be symmetrical about tho
major axis (q-axis) and, since the cross section is aasumcd
symmetrical,would lead to a resultant sheardirected along tho
major axis. Only the remaining term Er(o” sin 13-w” cos /3)
can lead to shearing stresses which produce torquo.
Thus in order to locate the position of the elastic axis, it is
suflkient to consider the beam in bending about the mhjor
axis only, with a linear stress distribution in the r-direction,
and then to determine the shearing stresses over the cross
section (ii the q- and r-directions) md tho position along
the major axis for which these shearing stresses produce no
resultant torque. (See treatments on elastic axis and shear
center in ref. 17.)

The substitution of equation (2) into equati~ns (3), (4),
and (5) gives the following equations for total elnaticmoments
in terms of the displacements:

lM1=EI1(—v” sin ~+W” COS B) (6)

M2=E12(v” cos pi-w” sin B)– TeA–EB2&+’ (7)

Q= [QJ+TkA2+EG@’)~1#’+

TkA’/3’-EB(D”D” Cosp+w” sin /3)‘ (s)

where 11 and 12 are the principal moments of inertia of the
tensile camying area (L is the moment of inertia about the
mean principal axis, not about the ~-axis) and where B] and
B2 are section constants defined by

B,=
J( )

‘1’ tqz @+;-kA2 dq
qt,

B2=
J( )

‘“ tq ~x+$-kd’ dq
@td

(9)

In equations (9) it is interesting to note that if displacements
parallel and perpendicular to the bIade chord had boon
used instend of v and w the results obtnined would difFor
horn those used by other investigations. (See appendix A
for the results obtained.) Also of interest is the form that
equation (8) would take if large deflections in # were consicl-
ered, but with v=w=O. This point, which is connected
@h the possibili~ of a torsional instability, is discussed
F&oin appendix A.



EQUATIONS OF MOTION FOB NONUNIXORM FLOTOIiBLADES 183

MOMENT TRANSFORMATION

In the consideration of the equilibrium between moments,
shears, and tension, it is more convenient to deal with
moments thut are orientated paraJleJ to the z-, y-, and
z-axea, that is, the moments M., Mr, and M. show-n in
figure 3. A simple transformation of the moments Ml,
M, and Q to these newer moments is thus desired. When
the Mlj M, and Q momenta are resolved into components
in the z-, y-, and z-directions, respectively, and use is made
of the relations that when @ is small

Sin(p+l#)=sin /3+($ Cos /3

COS(13+4)=CCS /?-# sin B}
(lo)

the following relations are obtained:

M== Q+M,(COS /3-+ sin p)o’+
1

M,(sin p++ Cos /3)w’+.kf@n B+
I

(#lCos p)o’–kfa(cm p–+ sin p)to’ k(11)

M,=ilf,(coa p–~ sin /9)+M@l /9+@ 03s p)– QU’
I

Mg=–iw(sin g?+#Jcm 13)+kf,(c-os p–+ sin /?)+Qw’ j

Now when equations (6), (7), and (8) are substituted into
equations (11), and all the second-order terms are dropped,
the following desired equations for M., M,, ~d M ti terms
of the displacements are found:

M.= [GJ+ Tkdl+EBl(~’)~@’+ T?CA2P’-EBZP’(V’’COS B+

W“Sh.~) — TeAV’Sh~+ TeAW’COS~ (12)

kfv= (271,COS213+EI,Si.@~)W”+ (EIz–E1,) sin ~ COS /%J”–

(1’eA+E.&9’&) & /3– l’eA4 cm /3 (13)

M,= (E12—EI1) sin K?cos P w“ + (EI1 sin219+EIscos2/9)u”—
(Te.+EB2&@’) cos p + TeA4 sin ~ (14)

EQUILIBRIUM CONDITIONS

The equilibrium of the forces and moments that act on a
dMerential beam element is now Cotildered. In this con-
sideration the element is formed by slices parallel to the
~z-plane, because this choice leads to rather simple results.
The forces that act on such an elem&t are showmin figure
(3(u); the moments, in figure 6(b).. The quantities ~., ~~,
Z, L L and 1. are r~tant force ~d mom~t loax,
which involve both the acceleration body forces and the
applied aerodynamic loading. The acceleration body forces,

,+*;Mx-”jj$=6
x“/‘x

(a) (M

(a) Forces. (b) Momen& ‘
FIGUEE6.—Equilibrium of forces and moments.

5205974~13

due to both centrifugal and transverse accelerations, are
derived in appendix B.

Summation of the forces in the z-, y-, and z-directions and
summation of the moments about the z-, y-, and z-axes lead
to the following equilibrium conditions for shear and
moment:

T’+~.=0
vv’+~v=o

}

(15)
v.’+~z=o

Mz’– VVw’+V~’+~==O (16a)

MW’– Tw’+V.+&=O (16b)

M;– Te’+VV+ijz=O (16c)
,

By substitution the shears in these equations may be
eliminated to give the following basic equilibrium conditions:

M.’–MV’+M;W;W’ ‘-@+?jzW’+ijz= O
M:’–(Tw’)’+~V’–~z=O

}

(17)
M; ’–(Tv’)’+ij:-jjW=O

Substitution of equations (12), (13), and (14) into equations
(17) gives

–{ [~~+ TkA’+EBI@’)7#+TkA2&–

EB@(v” COS fl+W’’SiLl /3)} ‘+

TeAv’’sin p–2’elw’’ccs /?+-jQY-ijsw’-~==O (18)

[(EI1 ccs2/9+E12Sid~)W”+ (EIrEYJsin /3COS/3V“-
(TeA+EB@#)sin /3–TeA@COS~]”-

(Tw’)’+~–~z=O (19)

[(E12–E11)sin /3cos /9W“+(EI, sin2/9+EI, CCS2fl)V”–
(TeA+EB&’#)cos p+TeA~ sin f?]”–

(Td)’+~:–~r=O (2o)

where second+rder t-mms have been dropped. Only the
loadings now remain to be considered.

RESULTANT LOADINGS

& mentioned previously, the resultant or total loadings
are composed of both the inertia loading due to centrifugal
and vibratory accelerations and the applied aerodynamic
loading. The inertia loadings, which consist of the force9
and moments which oppose accelerations of the blade ele-
ments, are derived in appendix B whereas the .atiodynsmic
loadings L9, L., and M are left in this symbolic form, since
they are in the nature of externally applied loadings.

The procedure that follows is employed in the derivation

of the total loadings which is given in appendix B. The
acceleration of any mass particle on the vibrating, rotating
blade is derived and the components in the z-, y-, and
z-directions are obtained. These component accelerations
include terms for the Coriolis force and transverse and cen-
trifugal accelerations along with higher order terms. The
inertia force and moment loadings are then obtained by in-
tegrating over the cross section; these are simpMed by
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dropping second-rder terms and are then added with the
aerodynamic or applied loadings to yield the following de-
sired rgmikant loadings F=,TV,F., & G ~d 1.:

~,=LY–mr5-@(v+eo)] +me[4 sin p+

@(cos /9-+ sin p)]

~=M-$2%ne[(o+eo) sin B+eo@ cm ff]+me(%in 19–

ii)cog ~) ‘fh@g@2-k.l’)(f& Bas ~++ Cos 2B)—?dt.A*~

~,=–il’mez(cos /3-4 sin IS)

(21)

FINAL DIFFERENTIALEQUATIONS

The substitution of equations (21) into equations (18),
(19), and (20) gives now the desired final differentkd equa-
tions of equilibrium

–{ [GJ+Tk*’+EB,@’)’J# -EB@(v” COS~+W” Sin /3)}’+

Ted(d’ sin L&w” cm D)+$%nxe(-v’ sin L?+w’ cos p)+

Mne sin /30+Q’m[(k@s-k.ls) cos 21S+ee0cm ~]@+mk.2&

nze(usin @—@ cOs 19)=M+ (TkAa19’)’-@m[(kfi2—

(22)km,~)sin/3cm P+,gg@-gl

[(EI1COS213+EI,Sin’ ~)W”+ (EI,–EI,) sin /9COS/3V“-

TeA($COS &~#@’SiD ~~’– (Tw’)’– (@mze(j COS /3)’+

m.(ti+~ cos /3)=Lz+(Te4 sin /?)”+ (Wnxe sin p)’ (23)

[(E12–E1,) sin/S cm ~ W“+(EI1 sin’ B+EI, cos’ ~)0”+

Te.@ sin &EB@’o’ cos 6]”- (To’)’+ (@mxe@ sin ~)’+

W@ sin ~+m(%–e~ sin P)–!Ymv=&+ (Ted cos ~)”+

(L%nzecos p) ’+$1’m(e.+e cos ~) (24)

In these equations, the terms that are not included in
previous theories have been underlined. (It should be noted
that ref. 18 suggests the &tence of the centrifugal coupling
terms fl’mzew’ and (Q%r@)’ for the case of a blade with
B=O.) ~Iany of these new t~ me coupling-me terms
which me associated with the centrifugal forces. A number
of the nmv terms take the forms of lateral and twisting load-
ings which tend to deflect the blade even in the absence of
externally applied loads; because of this fact they have been
written on the right-hand sides along with the applied loads
LV,L,, and M.

hportanoe of coupling forms,-It is beyond the scope of
this paper to make a complete evaluation of the magnitude
of each of the coupling terms and their influence on such
phenomena as, say, blade vibration. A rough idea of their
importance can be gathered by analyzing each term in detail
and comparing them to other terms of lmown importance,
&an example, consider (TeAd cos p)” in equation (23). H,
for simplicity in the consideration, ed and m are considered
independent of z, and if ~=0, then this term would become
on expansion

–@meA$+2T’(e.$)’+ T(eA~)”

These terms may now be compared with other terms of
lmown importance. Thus, if e~+is interpreted as a deflection,
then the last two terms of this expansion are seen to be
mactly comparable to the exp,tion of the well-known and
important term (Tw’)’= T’w’+ Tw’~. Also the first term
–f%e~+ is directly comparable with the coupling term of
established importmce in the consideration of coupled
bending-torsion of vibrating beams, namely, u%@. A
similar consideration may be given each of the other new
terms in the final equations. The examples to be presented
later will also give an indication of the importance of some
of the texms.

Boundary conditions,-Since the problem is, of course, a
boundary-value problem, some mention of the associated
boundary conditions should be made. The most general
case involves ten boundary conditions-two conditions
associated with equation (22), and four each for equations
(23) and (24). These conditions all evolve from the type of
constraint that is imposed on the ends of the bewm on the
displacements v, w, and ~, the moments MV and .Mg (eqs.
(13) and (14)), the torque Q (eq. (8)), and the shears V,
and V, which are defined by equations (16b) and (16c).
For a completely fixed end, the boundary conditions would bo

v=w=~=m ’=ulf=o

For a free end, the conditions would be

~ Q=MV=MZ=VV=V,=O

In this case, the alternate choice of MI=M’=o (see eqs.
(6) and (7)) may be used instead ~f MH=MZ=O.

For the present system, an end cannot be referred to
simply se pin-ended; care must be taken to specify the num-
ber and directions of pins present. For marnple, an end
may have a pin which runs parallel to the y-axis but mby be
fixed as regards displacenients v and +. In this example, the
moment Mr has been relaxed ‘knd the boundary conditions
become

V=W=V’=~=MV=O

Other pin-ended conditions follow in a similar fashion,
Elssticdly reatraiqed ends may be handled in a manner

sirodar to that used in the usual treatment of beams, except
that the direction of the restraint must be properly taken
into account.

Sulmases of the general theory,-li actual applications,
several special subcases of the present tlieory are frequently
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encountered. Three of these subcasea are described as
follows:

Case I: The built-in twist is ZETO,f?=O.
Case H: Bending in two’ directions without torsion, #J=O.
CriseIII: Torsion only, ZI=W=O.

The equations of motion which result w-hen the theory is
reduced to these special cases am as follows:

For cme I, /3=0,

–[(QJ+TkA’)@’]’-Te~w” +$22mxew’+@m(k&%?+

~t@$+m&’$+meib=M

(EI1w”- Te.~)”- (Tw’)’– (Wnze@)’+m(ti+e@ )=L,

(E1’,v’’)”– (Tv’)’–Wmv+m~ =LV–

(TeA)’’+(@mze)’+ @m(eO+e)

I?or case II, +=0,

[(EI1 COS’~+~~, Si.112@tV”+ (~&~~,)SiIl ~ COS ~ V“]”-

(Tw’)’+mti=Lz+(Ted sin ~)’’+(Wmu sin P)’

(26)

(26)

(27)

(28)

[(EI,–EI1)sin 19COS /3W“+ (EI, sinzj9+EI, COS’~)V’~”–

(Tv’)’–@mo+m5=Lr+( Z’ed cos p) ’’+(@mze cm ~)’+
@m(eO+e cos p) (29)

l?or case ~j o=w=O,

–{ [@J+ TkJ+EBl@’)’]# }’+fPm[(&#–

&’) cos 2f?+ee0 cos Bl@+m&’?

=M+ (TkJ/?’)‘ – f%t[(h’-h’) sin P cos P+eeOa p] (30
ASSOCIATED~GY EQUATION

As a check on the derivation presented herein, the di&r-

ential equations of equilibrium were derived by a completely

different approach that involves energy principles. In this

energy approach the strain energy of deformation, in which

the longitudinal strains were arrived at in a Wlerent manner

than that presented herein, and the work performed by all

the forces present were considered. The equation for total

potential energy of the system is, of course, closely allied to

the di&xential equations and is of intrimic value in the

treatment of the problem of the present paper from an energy

standpoint. For completeness, the equation is presented

here without derivation. E U denotes the total stmin
energy and V repr=ents the work performed by the centrifu-
gal body forces and the applied loading, then

U–V=;SO”{EI,(N Sk &w” CosLO’+EI@ cos 8+M fi 9) ’+[GJ+EB1(P’)7 (0’-2EB4~ cos ~+

@ sin @)@#’ }dz–
N{

‘T
0

–;[(0’)’+(W’)’1+8.(V” cm /3+?0” sin f?)
[ 1}

—edf$(tfsin 19-VY cos j9)—kd* *(f#)2+&# +

{
flsm ze[– (v’ cos /3+w’ sin P)++(2+ sin P–w’ cos 19)]++(e cos l?+eo-ef$ sin 19)v+[– (kd–

}
k’)s~ B Cos f++% ~ PI+ [(&’–&’) cos 213+ee0cos @]& +psu+p.w+@ z)

(31)-

where p~, p., and g are the applied loatim co~id~ed ~ a
static sense. Application of the minimum variational
principles to this exprwsion yields differential equations
which are the same M those given by equations (22), (23),
and (24) when +, v, and w are not time dependent. The
variation also gives the boundary conditions on moments,
sheara, and torques that are for stipulated geometrical
conditions at the ends of the beam and are given in the section
entitled “Boundary Conditions”. The differential equations
applicable when time dependent motion is considered may
now be obtained by mriting the loadings PV,p,, and q as the
sum of the applied loadings and vibratory inertia loads (as
obtained by D’Alembert’s principle); specifically,

py=Ly–m(ti-e~ sin 9)

p.= L,–m(G+e$ cm /3)

1

(32)

q=M+me(v sin o–w cos P)–mkm’$

The substitution of these loadings into the differential equa-
tions obtained by the variational process then gives equations
identical to equations (22), (23), and (24).

METHOD OF SOLUTION AND EXAMPLES

The general di.ilerentialequationa of this paper cannot be
solved exactly, and it is therefore necesary to resort to some
approximate means. Two means, which differ in manipula-
tions but which yield equivalent results, will be considered
here-one is a modified Galerkin type procedure, the other a
Rayleigh-Ritz procedure.

In the modified Galerldn procedure, the displacements are
assumed to be expressed in finite series of known functions
as fOlloww:’

where an, bm,and c. are unknown coefficients, which may be

time dependent, and 4., w., and o. are chosen modal func-

tions which satisfy the geometrical bound~ conditions of

the problem. A set of linear simultaneous equations which

allow the evaluation of the unknown coefficients is now
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formed through application of the following equations:

J

R

1
@,(@,w, o)dz+Qdn ‘=0 (n=l,2,3,.. .p)

o 0
(34a)

J

R
wnD2(@,W,V)dx+MVwn

o ‘I+v@T=O ‘n=1;23yo’)
(Mb)

where D1(@,w,o), Dz(@,w,o), ~d Ds(4w,w) deno~, r@pec-
tively, equations (22), (23), and (24) with all the righbhand
terms transferred to the lefhhand side; Q, MY, and M. are
given by equations (8), (13), and (14); and V. and V. are
found from equations (16b) and (16c). For static or other
externally imposed loading conditions, the set of equations
formed by equations (34) will be nonhomogeneous; the
solution for the unknown coefficients and, hence, the displace-
ments then proceeds by ordinary means. For a charam%is-
tic-value problem, such w free vibrations, the set of equations
w-ill be homogeneous, and the vanishing determinant will
yield the characteristic frequencies.

This procedure is called a modiiied Galerkin procedure
because of the presence of the boundary tarms in equations
(34). In general, it would be very d.ifEicultto choose modal
functions in equations (33) so that both the geometric and
“force” (shear, moment, torque) boundary conditions are
satisfied, which is necessaxy in the usual G&&in approa&.
Therefore, the force boundary terms are added in equations
(34), and, thus, the stipulations on the chosen modal func-
tions are relaxed so that only-the geometric conditions need
be satisiied. It should be mentioned that in actual applica-
tions these force boundary conditions do not have to be
evaluated, since they can always be candled by integrating
certain of the terms of the integrals by parts. A justifica-
tion of this procedure can be obtained from the Rayleigh-
Ritz procedure.

In this Rayleigh-Ritz approach the displacements are
expanded in series as before (see eqs. (33)), with the same
requirement on the geometric boundary conditions. These
e~ansions are substituted into the energy equation (31),
and a minimization is then made yith respect to the unlmow-n
coeillcients; that i5,

W-v)=o
&zn

(n=l,2,.. .3)

~u–w=~
bbn

(n=l,2,. . . g)

~@J-m=o
acn

(n=l,2, . . . r)

(35)

The resulting equations will be identical with those of equa-
tions (34). & a matter of fact, equations (35) maybe used
to prove the validity of equations (34) (through appropriate
integration by parts) and thus to show that the two proce-

dures outlined here are really equivalent. Because of the
confusion that often arises about boundary conditions when
the Galerkin process is applied, the safest procedure is to
use the Rayleigh-Ritz approach.

Two examples are now given to show the application of
the two procedures discumed and to show further the
importance of some of the coupling terms.

~LE 1
/

In example 1, it is desired to determine the natural fre-
quencies of a rotating cantilever blade hm-ing zero initial
twist or blade angle of attack @=O) and with 0=0. Tho
Rayleigh-Ritz procedure wiJl be used. Assume that the
displacements @ and w are given as follows:

$=alf#Jl+&h+%&

}

(36)
W= blwl+ bj%+ ba~

where +. and w= are the nati uncoupled modes of the

nonrotating beam in torsion and bending, respectively, and

are expnmsed in terms of a unit tip displacement. Equa-

tions (36) are substituted into equation (31) with u=13=0,

and a minimization is made with respect to an and b~, and
then use k made of equations (32), with the applied loadings
Lr=L,=M=O. The resulting equations are then reilucod
aa follows. First, the relations which apply to uncouplwl
vibrations are used, namely

J

E
mw.wmdz= O

0

=M=

J

R
EII W~’’Wz” dz=O

o

sR= wn~ mw~gdz
o

J

R

d.’+.+. dx=O
o

=Nn

(m#n)

(77Z=?L)

(m#n)

(m=n)

(m#n)

(m=n)

(m#n)

(m=n)

(37)

where W. and ~ are the natural circular frequencica of the
uncoupled bending and torsion modes, respectively. Second,
the constant terms are dropped, since they apply to statio
deformation of the blade. And third, motion reprcaentative
of simple harmonic motion is considered by setting

am=?i~sin d

b==~. sin tit



The bcl equations will be homogeneous, and the mnbhing of the detarrninaut of the Z= and & coefficients wifl define
frequencia This detmninant is

1

(q’-@M,+A,l A. Au —Bu-coW1l+ SPD,l —B~—LoWil+ Q’Da

AIi (u&NW,+A. An —Bti-aQC,,+ Q’D,, –BB–&C.+WD.

A,, A. (fJa’-&JM,+A. —B,3-I&C13+i2sD18 —Bm—d&+@D.

–Bl,—#CiI+ Q’DII —Bn—L#U,,+@D,2 –B,,–d&+fPD,, @,’-@ iV,+E1,+Q’F1, E,2+ Q*FU

–B,l–dCk+ fPDg, –Bn–dG,+ CFD,, –BU–@C&Q*DB &+ fl’F,, (jL,Lm’)iV,+En+ fPFn

–B3,–dC,,+ $2’D3, –B~–dC~+IYDtI –Ba–dCa+Q’Dn G,+n’F13 %+ri’Fn

where the coefficients are

the natural coupled rotating

–BU–LPCU+ !YDn
=0

E,,+ @F1,

o
w

No numerkl evaluation of this emmple iB mode, but the importica of some of the new coupling terms of the prment theory is redid by oompar-
ing the cssooiated coupling terms which nppear in the detwminan t. For example, $YDfi,which is new, may be compared with cJ@ n conventional term

of established imporkume. The hquenoiea fl’ and a’ maY be of the ewe order of mw@ude; the factors under the integral are the same empt for w and

ZW,’. These maybe shown to be of the same order of magnitude, however, tid so both coupling terms are comparable in magnitude. ‘1%.is iE another

indication, tierefore, that the new coupling tams are of eignifkanoe in the treatmmt of rotating bladrn.

ExAMmJ3a

The c.we treated for emmple 2 is a uniform blade with cm ofket mass at the tip and with ~, o, e~, and e, equal O. (% top sketch in fig, 7.) T~
eyBt.em maybe regurded as having a behavior similar to an acturd helicopter blade which is heavily loadd along the leading edges, as depicw in the
lower sketch of figure 7. An approximation to the fit two notmnl frequencies will be found by the modified Galerldn procedure, The dii?erentifl
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FIGURE7.—Natural frequenoka of example 2 showing the importance

of centrifugal-force coupling.

equations for shear, moment, torque, and tension (eqs. (25),
26), (16), (13), and (8) with 13=o=e4=eo=O) applicable
here are

–[(GJ+TkA’)#1’+Q’mzew’+ Q’m(&’-

&’)4-~(W+m&V) =0 1(39)

(E@’q”-(Tw/y-(@nze4)’-@yTnw+7ne@)=o

(40)

In these equations the mass per unit length m should be
interpreted to apply to both the distdmted mass of the
beam and to the concentrated offset mass. This concentrated
mass can be handled, for example, by imaginhg the mass to
be distributed over an infinitesimal length, say X, with
intensity M~j then to perform the integrations of the
Galerkin process as though all quantities involved in the
integrations are uniform in this interval, and tially to
squeeze the interval down to zero length. An equivalent
procedure is to take the concentrated maw into account
through means of the Dirac delta function.

With this in mind, equations (39) and (4o) are substituted
into equations (34a) and (34b); the terms @n(6U+ ~~~~’
and W=[—(Tti) ‘— (Q%wc@)’] are integrated once by parts,
the term wa(EI1w”)” is integrated twice by parts, the
boundary terms cancel, and the results are the following
two equations:

J J
‘( GJ+TkJ)4’4/dz+ j%xew’+
o

sB

J
EI,@w*Hdx+ o’(Tw’+@mxe4)w;dz–

0

J
u’ ,E(mw+me@)w.dx=O (42)

Approximations to the displacements are now chosen as

(43)

where #1 and WI are the fundamental uncoupled vibration
modes of the beam without the tip mass, in torsion and
bending, respectively, and each is given in terms of a unit
tip displacement; these functions satisfy the equations

J

E

J

E
@J(dq’)%z=Plz ink%%

o 0

(44)

where m refers only to the mass per unit length of the beam.
Equations (43) are now substituted into equations (41)
and (42), use is made of equations (44) and the equation

for tension (applicable here) T=: @m(lP-&) ,+~’k?l?,

and the integrations are performed with due cognizance
being given the offset tip mass; the vahma found for the

(46)
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(The contribution of Z&g is found negligible in the fit
integral.) The final equations are given now in nondi-
mensional form

The vanishing of the determinant of these equations will
yield the natural frequencies. Specfic evaluation has been
made for the following values:

M=~R
. .

R
(Z4
—=

flg=0.152$
w? m

rmd the results are shown in figure 7. Results are shown
for three conditions: (a) for vibration of the beam with
offset mass in pure bending or pure torsion, (b) for vibration
in the conventional coupled sense but with no centrifugal-
force coupling (that is, the underlined terms of the equations
of this example are omitted), and (c) for vibration with
all coupling terms considered (the curves labeled complete
in fig. 7). It may be seen that the inclusion of centrh%gsl-
force coupling, which is new in this paper, has a very pro-
nounced influence on the vibration characteristics. In
fact, this centrifugal-force coupling seems to be of the same

general strength as the conventional offset mass coupling
normally considered.

CONCLUDINGREMARKS

The differential equations of deformation of a twisted ro-
tating blade under arbitiary loading have been derived.
A speciil feature of tiheanalysis is the consideration of the
noncoincidence of the tension, mass, and elasticaxes, whereby
coupling is allowed to occur in a more general form than
heretofore considered. This theory can therefore be used
to solve problems in which these eilects are sigr&ant and
to evaluate the less complete theories which perhaps are
more easily applied.

The aerodynamic loading considered ma left in general
form. It can be replaced, however, by whatever terms are
appropriate for the case being treated. If these aerodynamic
forces are taken as zero, then the loadings for free vibration
result.

Because of its usefulness, the energy equation for blade
deformation is also presented. Two methods of solution
are discussed: one is a modified Galerliin process which
makes use of the differential equations; the other is a Ray-
leigh-Rita procedure which makes use of the energy expres-
sion. TWO examples are presented which illustrate the
application of both of these procedures.

A discussion of the importance of the new coupling terms
that arise is made and their significance is further brought
out by the examples. The indications are that the centrifu-
gal-force coupling may be as important as the mass coupling
that is normally considered in beam analysis and therefore
should be included as a regular part in the treatment of
rotating blades.

tiGLEy &RONAHCAL LabOratOry,
NATIONAL ADVISORY COWTEE FOR &RONAUTICS,

LANGLDY FIELD, VA., Octolwr 6, 1966.
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APPENDIX A

DERIVATION OF LONGITUDINAL STRAINS

In this appendix the equation is derived for the longi-

tudinal strain that is developed when a twisted beam under-

goes both lateral and twisting deformations. Consider an

imaginary plane to cut through the beam perpendicular to

the elastic a&; the location of a fiber f of the cross section,
both before and after the deformation, may then be given
according to sketches 1 and 2. The z-axis is normal to the
paper and is made coincident with the undeformed position
of the elastic axis. In terms of the distance ~ along the
major asis, the distance f- perpendicular to this ask, and
the builhin twist P, the initial y- and -positions of the fiber

“’--mtic ti

Sketah 2.

190

and the rate of change of these positions with respect to
the z are

(Al)

y’ = —?)p’ sin p — ~fl’ Cos /3 = —p’zI (M)
z’=@’c Os/3-~&sinfl=fl’y

NOW consider beam displacements to occur so that the

point of intersection of the elastic axis and the outting

plane moves the distances u, o, and w in the directions

of z, y, and z, respectively, and so that the cutting plane

remains perpendicular to the elastic axis and rotates around it

by an angle ~. Then if the usual small-angle assumptions that

cos@+#) =cos/3- @sin/3 andsin@+ @)=sin/3+@cos/3

are made, the new position of the fiber is defined by the

following equations:

zl=x+u —v’~;-v)-w’(zl —w)
=Z+p —v’y —w’z

Yl=v+Z’(ws~– @sin fl)-J@n/3+
#lcos13)=v+y-zdl

zl=w+?#l (sinp+l#J cos B)+~(cos p—
+Sinp)=w+z+y+

(A3)

and the derivatives of Zl, yl, and Z1with respect to z am
given as follows:

xl’ = l+u’— tf’y + dfl’z – W“z –W’p’y
=1 + u’ – y(fl” + #’w’) – Z(w” – 9’0’)

yl’ = 2)’ — fvz — p’y~ — # = ~’ —

,1

(A4)

YP’4 – Z(J?’+ @’)

21’ = ‘w’ + D’Y — B’%J + Y+’= w’ +
Y@’ + ‘$’) – @’4

The longitudinal strain that is developed in a fiber may
be found from these equations by considering the amount
an elemental fiber of length & changes in length as a result
of deformation. In terms of the differential components. of
length in the z-, y-, and z-directions, the final length 0%1of a
fiber is given by the following equation:

d# = dxlg+ dylz + dz? (A6)
Thus

()
~ ‘=(X,’) ’+(?J1’)’+(Z1’)’ (A6)
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which becomes with the use of equations (A4)

&l 1
()z

=1+2 [u’--y(z+’’+/3’w’) -w”’9”-/)]+z~]Pz2z@--2z@’ (o’—

@’&-z#)-ty’13’2+2@ (w’+y@’–zfl’@) (A7)

or

*={ l+(y~+z~ (f?’)9+2 [u’-’yv”–

zw’’+@~+z~)p’@’] ]fi (A8)

Now the analogous equation for the original length d8 may
be determined directly from equation (A8) by letting
w=o=w=@=O. Thuz

$=[l+(&+@)@’)1~

The tensile strain in the fiber can now be written

#i%l–ds

d8

dq

ds’

u— —

{[

2
1

[U’-yt)” —zW”+= 1+ l+(yl+z~) (p’)’

(&+z’)~’&j}~–l

[
1

1= 1+ (y2+zl)&2 [U’—YV’’—ZW’‘+ (y~+z919’#]

(A9)

(A1O)

NOW with (y2+z9) (/3’)’<<1 (say less than 0.03 to 0.04, whi&

iz generally the case), then

E=wf -@f -Zwf’+ (’&+zqf?’fb’ (All)

Use is now made of equations (Al) in order to express the
strain in terms of the crow-sectional coordinates q and ~ as
follows:

6=U’–7)(ZP Cos/?+w” sin.p) –r(–zf sin /?+

@ COS /3)+ (q2+p)&# (AM

It is convenient now to eliminate the strain component u’;
this is done by making use of the equilibrium condition that
the integral of the longitudinal stress over the cross section
must be equal to, the total tenzion. Thus, with the &sump-
tion that the cross section is symmetrical about the major
principle axis, the following equation applies:

SS
-E ,; ‘“ [u’–q(u” Cosp+w” sin B)–r(–o” sin p+

-1/2

W“ COS f?)+ (qg+P)&#’ld~ dq (AJ3)
5~0507+&14 \

or

T=~Au’–AeA(v” ma @+-W” Sill/3)+Ak.2fI’#] (A14)

This equation yields

H T/EA is denoted by the tensile strain ~, then equation

(A15) combined with equation (A12) yields

(A16)

which is the complete expressionfor the strain of any fiber in
the cross section.

EXPRESSIONFOIZ,%3TILUNIN T~ OF DISPLAC~ SIN AND
NORMAL TO THE BLADECHORD

Because of apparent anomalies that have arisenin the past,
it is of interest to show the development of the strain in terms
of displacement in and normal to the blade chord. Thwe
displacements have been used by some investigators and we
shown in relation to the displacementsof thispaper in sketch 3.

Sketuh 3.

These displacements are related according to the equations

0=01 Cosp—q sin /3

W=th Sin M-WI Cosp}

(A17)

If two derivatives of these equations are taken, and due awe
is given the fact that B may vary with z, then the following
combination of these derivatives may be found:

Vtf Cosp+w” sin p=v1’’—2wlwB’—B’’) %1’)%l

}
(A18)

—V’r sin p+w” Cos/3=’wl’’+2l3’vl’+f9’’v]— (&)%

If these expressions are now substituted in equation (A16),



--.—- . . . . -..——.—.— ——— —.. .—.. — -—. .— —

192 REPORT 134&NA’ITONAL ADVISORY COMMITTEE FOR AERONAUTICS

then the equation for strain becomes

●= e+ (e.4-?j [V1’’—zwlwp’—p’’wl—(&)%+

f[w,’’+2p’v,’+/Y’fi– @’)%,]+ (#+&k.9&#

(A19)

The interesting fact to be noted here with respect to q and
WIis that the strain is not proportional only to the derivative
OL”and ~“, as might fit be supposed, but rather to addi-
tional terms which involve the rate of change of initial twist.

This observation has some significance. If the amdysis of
thmpaper had been carried through in terms of displacements
a and wI, then the moments and all the results would be in
terms of the group of terms appearing on the @h&hand side
of equations (A18), and the final result would be in agreement
with the resultspresented in reference 11. This consideration
indicates that the treatment in reference 1 maybe subject to
correction, since the assumption is made in this reference that
the moments are proportional to n“ and m“. Evidently this,
assumption is not valid when the beam has a finite-rate of
change of initial twist.

8TRAINWHEN~1S NOT SMALL

The preceding derivation was made on the assumption that
the displacements u, v, w, and o were small, and a linear
equation for strain results. ~ interesting observation may
be made, however, for the case of v=w=O, but with large dis-
placements in +, such that nonlinear effects are present.
Thus, if the derivation is repealed with @ considered large,

and with v=w=O, then equation (Al 1) would take the form

[ 1
C=U’+ (@+zx) /3’# +;(!$’)Z

[ 1
=U’+ (#+ {~) ~’+’ +&)i (A20)

The strain component u’ is now handled as before, and the
equation for strain becomes

[ 1
e= CT+(#+&-kA~) &#+;(#)* (A21)

This equation may be used to demonstrate the fact pointod

out in reference 19 that pretwisted blades may possess & tor-
sional instabtity. Thus if use is made of equation (5), and
the stress ia based on equation (AX), then the following
equation for”interred elastic resisting torque results:

[ 1
Q= C7c7#+Z%.’@’++’) +El?, Is’+’+ ;(4’)’ (F++’)

=W#+Z%A’@’+#)+y [@’+@’)’–@’)’@’+@’)]

(A22)

Observations similar to those made in reference 19 may be
made about equation (A22) with respect to the possibility of
twsional instabihty; as a matter of fact, if the net teneion
over the cross section is zero, the equation becomes similar
to equation (2) presented and discussed in reference 19.

.

.-



APPENDIX B

DERIVATION OF ACCELERATIONS AND INERTIA LOADINGS

The purpose of this appendix is to derive the acceleration
of a mass particle of the twisted rotating blade and to
derive the inertia loadings from this acceleration. IU
order to do this it is convenient to introduce the fixed X, Y,
Z coordinate axes system shown in sketch 4. This sketch. .

Y

Y

/.

d

x– /’ -—–

Y;
/—— 4 —.

Sketch 4.

rho shows the rotating z, y, z axes system (used in the body

of the report and in appendix A) and the deformed positions
xl, WI, and ZI of the mass particle (see eqs. (A3)). ‘l%e

azimuth position of the rotating system relative to the
iised-rwes system is denoted by ti.

In terms of the unit vectors ~,j, and k, the vector 7 may be
written

7= ($1Cosi?t-yl sin !m)i+ (q sin W+ya Cosftt)j+zJ @l)

Differentiating with respect to time gives the velocity
vector of the mass particle

& (xl Cosfl.t-flzl sin ilt-’js sin ftt-0y2 CosW)’i+

(xl sin flt+flxl cos ilt+fi, cos flt-~, sin $lt)j+ilk (B2)

and diilerentiating once again gives the acceleration

?= [(21—QJJ Cos $2t-Q(til-Qy.J sin $%—(fl~+Q&) sin flt—

fl(~z+flq) Cosw]i+[(il–@J sin Q.t+Q(&-$hJJ Cosw+

@2+~%) Cos a–Q(j2+QzI) sin Qt]j+Z,k (B3)

The components ~, ag, and ~ of the acceleration vector in
the x-, q–, and z-directions may be found from this equation
by letting t=O, thus

?= (&-c&cl-2@Ji+ (fl,-@ya+Ml&)j+Zlk

=aii+&j+a&

Use is now made
yj=yl+e.. Thus,

(B4)

of equations (A3) and the fact that

Xl=z+u—v’y—w’zy2=o+y–@
Zl=w+z+ygil

The first two derivatives with respect
follows:

)

&l=u—~ly_w(z

$2=+–2$

il=w+y+

1

51=i&ii’y-w’z

g,=ii-z~

zl=w+y~

to time are given as

(335)

(136)

Substitution of these equations into equation (134)yields the
desired acceleration vector, with the follo~ components
in the z–, y-, and z-directions:

a==%—iYy—w’z—@ (z+u—v’y-w’z) -2 fl(5-z*)

~=$–z~–ti(u+y-z ~+e.) +2 fl(ti-iJ’y-w’z)

az=w+y~

(B7)

By substitution of the expressions (Al) for y and z, the

accelerations of the particle are obtained as follows in terms

of the coordinates ~f the cross-section ~ and q:

&=i&@(x+u)-2QV+ q[—5’ Cos p—ib’ sin /3+

W(o’ Cos /3+w’ sin p)+2Q3 sin p]+~[i? sin p–

w’ Cos /3+@(-u’ sin fl+w’ Cos f?)+2Q4 Cos /9]

~=5—@(o+eO)+2W+ q[—$ sin B—W(COS f?—

@sin/9)+

2Q(–3 Cos f?-lb’ sin /3)]+~[–+ Cos &

@(–sin p–+ Cos @+2Q(b’ sin /3-Zb’ Cos p)]

a.=w+q~ cos 19-fb sin /3

193
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The inertia loadings on the beam may now be derived
from them acceleration equations by appropriate integrations
over the crow section. The total or resultant loadings
desired in the analysis given in the body of this paper arethe
sum of the inertia loadings and the applied loadings, and are
given by the following equations, when the assumption is
made that the cross section is symmetrical about the major
principal axis:

SS
“v, ‘~

?V=– _t,2 [–%k-w)]p d~ dq
qtr

SS
‘“ [–a=(y,-o)]p d~ dq~c=— ““ _t,2

~t, J
where p isthe density of the structural material and maybe
a function of ~ and q. If the integrations are performed
with the use of equations (738), the following loadin~ are
found :

——7n[ii-@(z+zzJ) —2ti]-me[-zY cos &&-—
G’ sin B+@(v’ Cosj9+w’ sin fl)+2f14 sin p]

(B1O)

~r=Lr–m[ti-@(o+e.) +2M]-me[–? sin P–

@(cos P–+ sin /3)+2Q(-zY Cosfl-tii sin f?)]

(ml)

Y.= L.–m(ib) –reed cos ~ (B12)

~==ilI-Wne[(o+eJ sin 13+eof$w B]+me($sin 19–

ti COS/3+2flfisin /3)—ti[(ktia-k~~ Sk ~ COS~+ (k&-

k=,~$ COS2/3]-&n.km’-2Qm(kti2-k~~fi’ COS/3Sill/3–

2Qm(k&9sid ~+k.: C& 13)w’

(3313)

m(kX* aid /3+k.lZCOd/9)(2L’&ti’)

(B14)

~Z=—@me[(z+u) 00s P–@ sin i?]+me(ii cos &

2$%COS~)+@m[(k&–k~?)w’ SiIl~ COS~+ (km? coS’ ~+

k~’ sin9~)u’]–m(k~’–km?) ti’. sin I?cos p–m(kti’ Cosg~+
.-
km,’ sin; D)V+2Qm(kti’-?c.?)4 sin ~ COS~

(B16)

Equations (B1O) to @15) give the general expressions for
the loadings and contain many terms of second order whioh
for most engineeringpurposes can be neglected. In equation
(B1O), for example, all other terms are small in comparison
to mft?x, which is the conventional expression for ~= (note
that ~==– f!”); for most practical purposes these small
terms may therefore be neglected. For any specific rLppli-
cation, however, particularly in the case of unusual configura-
tions, the ralative magnitude and importance of the terms
should be determined. In the case of conventional helicopter
or propeller blades, it is believed that the following fit-order
~eductions of equations (B1O) to (B16) are suitable for most
engineering applications; “ ‘

~==—T’=mQ~

~FLr–mF–~’(o+eo)]+me[? sin B+

$-P(COSp-d sin /3)]

~.=Ls–m(ib+e$ cos P)

~=M–O%ne[(o+eO) sin p+e.+ cos 19]+

nze(iisin &ib cos IS)—@m(l&J—

L*’) (b BCosB++ CosZl$–mkm’i$

~=–$l%nex(sin l?++ 00s B)

lj.=-@mex(cos f9-1$sin /9)

where

km9=kfi2+km?

(B16)
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